

So f tware

I D C D O C U M E N T A T I O N

Message
Subsystem

Approved for public release;
distribution unlimited

Notice
Every effort was made to ensure that the information in this document was accurate at the time of printing.
However, the information is subject to change.

Contributors
John Coyne, Science Applications International Corporation
Deborah Dompierre, Pacific-Sierra Research Corporation
David Salzberg, Science Applications International Corporation
Michael Zatloukal, Science Applications International Corporation

Trademarks
Ethernet is a registered trademark of Xerox Corporation.
ORACLE is a registered trademark of Oracle Corporation.
Solaris is a registered trademark of Sun Microsystems.
SPARC is a registered trademark of Sun Microsystems.
SQL*Plus is a registered trademark of Oracle Corporation.
UNIX is a registered trademark of UNIX System Labs, Inc.

Ordering Information
This document was issued by the Geophysical Systems Operation of Science Applications International Cor-
poration (SAIC) as part of the International Data Centre (IDC) Documentation. The ordering number for this
document is SAIC-98/3003, published May 1998. Copies of this document may be ordered by FAX: (619)
458-4993.

This document is cited within other IDC documents as [IDC7.4.2].

M a y 1 9 9 8

I D C D O C U M E N T A T I O N

Message Subsys tem

CONTENTS
About this Document i

■ PURPOSE ii

■ SCOPE ii

■ AUDIENCE iii

■ RELATED INFORMATION iii

■ USING THIS DOCUMENT iv

Conventions v

Overview 1

■ INTRODUCTION 2

■ FUNCTIONALITY 4

■ IDENTIFICATION 6

■ STATUS OF DEVELOPMENT 6

■ BACKGROUND AND HISTORY 7

■ OPERATING ENVIRONMENT 7

Hardware 7

Commercial-Off-the-Shelf Software 8

Architectural Design 9

■ CONCEPTUAL DESIGN 10

■ DESIGN DECISIONS 10

Programming Language 10

Global Libraries 10

Database 11

Interprocess Communication (IPC) 11

File System 11

I D C D O C U M E N T A T I O N

UNIX Mail 11

FTP 11

Web 11

Design Model 12

Database Schema Overview 12

■ FUNCTIONAL DESCRIPTION 16

■ INTERFACE DESIGN 20

Interface with Other IDC Systems 20

Interface with External Users 20

Interface with Operators 20

Detai led Design 21

■ DATA FLOW MODEL 22

■ SOFTWARE UNITS 24

MessageStore 24

MessageReceive 25

MessageGet 27

ParseData 28

AutoDRM 30

MessageFTP 31

MessageAlert 32

MessageSend 33

MessageShip 34

MessageFlow 35

■ DATABASE DESCRIPTION 36

Database Design 36

Database Schema 38

Requirements 45

■ INTRODUCTION 46

■ GENERAL REQUIREMENTS 46

■ FUNCTIONAL REQUIREMENTS 47

User Identification 47
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

M a y 1 9 9 8

Message Tracking 47

User Interface 48

Operation and Logging 49

Message Distribution 50

■ SYSTEM REQUIREMENTS 51

■ REQUIREMENTS TRACEABILITY 51

References 59

Glossary G1

I D C D O C U M E N T A T I O N

M a y 1 9 9 8

Message Subsys tem

FIGURES
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY 3

FIGURE 2. RELATIONSHIP OF MESSAGE SUBSYSTEM TO OTHER

SOFTWARE UNITS OF DATA SERVICES CSCI 5

FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR

MESSAGE SUBSYSTEM 8

FIGURE 4. FUNCTIONAL DESIGN OF THE MESSAGE SUBSYSTEM SOFTWARE 17

FIGURE 5. PROCESS VIEW OF MESSAGE SUBSYSTEM 23

FIGURE 6. ENTITY-RELATIONSHIP OF MESSAGE SUBSYSTEM TABLES 37

I D C D O C U M E N T A T I O N

M a y 1 9 9 8

Message Subsys tem

TABLES
TABLE I: DATA FLOW SYMBOLS v

TABLE II: ENTITY-RELATIONSHIP SYMBOLS vi

TABLE III: MISCELLANEOUS SYMBOLS vi

TABLE IV: TYPOGRAPHICAL CONVENTIONS vii

TABLE V: TERMINOLOGY viii

TABLE 1: COMPONENTS OF MESSAGE SUBSYSTEM 6

TABLE 2: DATABASE TABLES USED BY MESSAGE SUBSYSTEM 13

TABLE 3: MAPPING DATA TYPES TO DATABASE TABLES 19

TABLE 4: DATAUSER 39

TABLE 5: FTPFAILED 39

TABLE 6: FTPLOGIN 40

TABLE 7: MSGAUX 41

TABLE 8: MSGDATATYPE 41

TABLE 9: MSGDEST 42

TABLE 10: MSGDISC 43

TABLE 11: POC 44

TABLE 12: TRACEABILITY OF GENERAL REQUIREMENTS 51

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER IDENTIFICATION 52

TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE TRACKING 53

TABLE 15: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER INTERFACE 54

TABLE 16: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
OPERATION AND LOGGING 56

TABLE 17: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE DISTRIBUTION 57

M a y 1 9 9 8

I D C D O C U M E N T A T I O N

S o f t w a r e
About th i s Document

This chapter describes the organization and content of the document and includes

the following topics:

■ Purpose

■ Scope

■ Audience

■ Related Information

■ Using This Document
i

About this
Document

▼

I D C D O C U M E N T A T I O N

ii

S o f t w a r e
About th i s Document

PURPOSE

This document describes the design and requirements of the Message Subsystem

software of the International Data Centre (IDC). The software is a computer soft-

ware component (CSC) of the Data Services Computer Software Configuration

Item (CSCI). This document provides a basis for implementing, supporting, and

testing the software.

This document is Issue 1 of an expected sequence of increasingly refined descrip-

tions of the Message Subsystem software. This document supersedes the design

and requirement descriptions contained in previous informal memoranda and

Configuration Control Board proposals.

SCOPE

The Message Subsystem software is identified as follows:

Title: Message Subsystem

Abbreviation: (none)

Identification Number: CSC 4.2

Version Number: 1

This document describes the architectural and detailed design of the software

including its functionality, components, data structures, high-level interfaces,

method of execution, and underlying hardware. Additionally, this document spec-

ifies the requirements of the software and its components. The information con-

tained in this document is modeled on the Data Item Description for Software
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ About this
Document

M a y 1 9 9 8

S o f t w a r e
Design Descriptions [DOD94a] and Software Requirements Specification

[DOD94b].

AUDIENCE

This document is intended for engineering and management staff concerned with

the design and requirements of all IDC software in general and of the Message

Subsystem in particular. The detailed descriptions are intended for programmers

who will be developing, testing, or maintaining the Message Subsystem.

RELATED INFORMATION

The following UNIX Manual Pages apply to the Message Subsystem software:

■ AutoDRM

■ MessageAlert

■ MessageFlow

■ MessageFTP

■ MessageGet

■ MessageReceive

■ MessageShip

■ MessageStore

■ ParseData

The following documents complement this document:

■ IDC Database Schema [IDC5.1.1]

■ Formats and Protocols for Messages [IDC3.4.1]

See “References” on page 59 for a list of documents that supplement this docu-

ment.
iii

About this
Document

▼

I D C D O C U M E N T A T I O N

iv

S o f t w a r e
USING TH IS DOCUMENT

The documentation of the IDC software is grouped within Category 7 of the over-

all documentation architecture, as charted on the Roadmap located on the pages

preceding the Table of Contents. Within Category 7, the documentation is further

subdivided into the same six CSCIs as the software architecture. The highlighted

box represents this document, the Message Subsystem Software.

This document is organized as follows:

■ Overview

This chapter provides a high-level view of the Message Subsystem,

including its functionality, components, background, status of develop-

ment, and current operating environment.

■ Architectural Design

This chapter describes the architectural design of the Message Sub-

system, including its conceptual design, design decisions, functions, and

interface design.

■ Detailed Design

This chapter describes the detailed design of the Message Subsystem

including its data flow, software units, and database design.

■ Requirements

This chapter describes the general, functional, and system requirements

of the Message Subsystem. Traceability tables define how the general

and functional requirements are met.

■ References

This section lists the sources cited in this document.

■ Glossary

This section defines the terms, abbreviations, and acronyms used in this

document.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ About this
Document

M a y 1 9 9 8

S o f t w a r e
Convent ions

This document uses a variety of conventions, which are described in the following

tables. Table I shows the conventions (Gane-Sarson) for data flow diagrams. Table

II shows the conventions for entity-relationship diagrams. Table III shows symbols

used to indicate levels of the documentation hierarchy. Table IV illustrates typo-

graphical conventions. Table V explains certain technical terms that are not part of

the standard Glossary, which is found at the end of this document.

TABLE I: DATA FLOW SYMBOLS

Description Symbol

process

external source or sink of data (left)

duplicated external source or sink of data (right)

data store (left)

duplicated data store (right)

control flow

data flow
v

About this
Document

▼

I D C D O C U M E N T A T I O N

vi

S o f t w a r e
TABLE II: ENTITY-RELATIONSHIP SYMBOLS

Description Symbol

One A maps to one B.

One A maps to zero or one B.

One A maps to many Bs.

One A maps to zero or many Bs.

database table

TABLE III: MISCELLANEOUS SYMBOLS

Description Symbol

category of documentation

subcategory of documentation

document title

A B

A B

A B

A B

table name

primary key
foreign key

attribute 1
attribute 2
.
.
.
attribute n
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ About this
Document

M a y 1 9 9 8

S o f t w a r e
TABLE IV: TYPOGRAPHICAL CONVENTIONS

Element Font Example

database table

database table and attribute,
when written in the dot
notation

bold dataready

prodtrack.status

database attributes

processes, software units,
and libraries

user-defined arguments and
variables used in parameter
(par) files or program com-
mand lines

titles of documents

 italics status

ParseSubs

delete-remarks object

Subscription Subsystem Software
User Manual

computer code and output

filenames, directories, and
websites

text that should be typed in
exactly as shown

courier >(list Ôa Ôb Ôc)

ars.scm

edit-filter-dialog
vii

About this
Document

▼

I D C D O C U M E N T A T I O N

viii

S o f t w a r e
Table V defines terms that are used in a specific context in this document. See the

Glossary at the end of this document for a more general listing of terms, abbrevia-

tions, and acronyms.

TABLE V: TERMINOLOGY

Term Description

fork This UNIX system routine is used by a par-
ent process to create a child process.

instance An instance describes a running computer
program. An individual program may have
multiple instances on one or more host
computers.

par (parameter) file An ASCII file containing values for param-
eters of a program. Par files are used to
replace command line arguments. The
files are formatted as a list of [token =
value] strings.

software unit or
computer software component

These terms define an element of a Com-
puter Software Configuration Item (CSCI)
including a major subdivision of a CSCI or
any of its contained subunits.
M a y 1 9 9 8

M a y 1 9 9 8

I D C D O C U M E N T A T I O N

S o f t w a r e
Overv iew

This chapter provides a general overview of the Message Subsystem software and

includes the following topics:

■ Introduction

■ Functionality

■ Identification

■ Status of Development

■ Background and History

■ Operating Environment
1

Overview ▼

I D C D O C U M E N T A T I O N

2

S o f t w a r e
Overv iew

INTRODUCT ION

The software of the IDC acquires timeseries and radionuclide data from stations of

the International Monitoring System (IMS) and other locations. These data are

passed through a number of automatic and interactive analysis stages, which cul-

minate in the estimation of location and in the origin time of events (earthquakes,

volcanic eruptions, etc.) in the earth, including its oceans and atmosphere. The

results of the analysis are distributed to States Parties and other users by various

means. Approximately one million lines of developmental software are spread

across six computer software configuration items (CSCIs) of the software architec-

ture. Two additional CSCIs are devoted to non-developmental software and run-

time data of the software. Figure 1 shows the logical organization of the IDC soft-

ware. The Data Services CSCI receives, archives, and distributes data through the

following computer software components (CSCs):

■ Continuous Data Subsystem

This software acquires timeseries data according to a standard protocol

and forwards the data to external users [IDC3.4.2].

■ Message Subsystem

This software exchanges data in response to user requests. The data are

formatted according to a standard protocol and exchanged through

UNIX mail [IDC3.4.1]. This software also provides the interface to mail

for the Retrieve and Subscription Subsystems.

■ Retrieve Subsystem

This software prepares messages, formatted according to the standard

protocol, that retrieve segments of data from stations of the IMS auxil-

iary seismic network [IDC3.4.1]. The software also parses the response

messages. The Message Subsystem exchanges the messages.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Overview

M a y 1 9 9 8

S o f t w a r e
FIGURE 1. IDC SOFTWARE CONFIGURATION HIERARCHY

Automatic
Processing

Interactive
Processing

Distributed
Processing

Data
Services Utilities

Common
Libraries

Detection
and Feature
Extraction

Station
Processing

MaxSurf

Global
Association

Post Location
Processing

Radionuclide

Threshold
Monitoring

Map

Analyst
Review
Station

Analyst
Review
Station

Geotool

Radionuclide

Process
Monitoring
and Control

Infrastructure Continuous
Data
Subsystem

Message
Subsystem

Data
Archive
Subsystem

Database
Tools

Timeseries
Tools

Configuration
Management

Miscellaneous
Tools

Data
Processing
Libraries

Data Import
and Export
Libraries

Timeseries
Libraries

Database
Libraries

IDC Software

Data
Acquisition
and Control
System
Libraries

Radionuclide
Tools

Retrieve
Subsystem

Processing

Website
Subsystem

Radionuclide
Libraries

Subscription
Subsystem

Event
Screening

Services

Application
Services

Tools

System
Monitoring
Subsystem

Performance
Monitoring
Subsystem

System
Monitoring
3

Overview ▼

I D C D O C U M E N T A T I O N

4

S o f t w a r e
■ Subscription Subsystem

This software maintains a subscriber database and prepares the regular

data products for delivery to subscribers. The Message Subsystem

receives the subscription requests and delivers the subscription products.

■ Data Archive Subsystem

This software saves timeseries data to near-line and off-line archives and

recovers data from the archives.

■ Website Subsystem

This software runs the IDC Web site.

The relationship of the Message Subsystem to the other components of the Data

Services CSCI is indicated in Figure 2. This figure shows that the Message Sub-

system (process 2) serves two roles. First, it accepts data from and provides data to

a number of external users, represented by the boxes labeled b, c, d, h, and g. The

Message Subsystem obtains data from and stores data within the Operations

database. It also can provide data from the Archive database. The second role the

Message Subsystem serves is to act as an agent for the Retrieve and Subscription

Subsystems. In this role, the Message Subsystem is the interface with external

users.

FUNCT IONALITY

The Message Subsystem enables authorized users to send a request for IDC prod-

ucts and have the products delivered. Requests are sent using email, and the prod-

ucts are delivered using email or the File Transfer Protocol (FTP). Requests are sent

in the form of IMS Request Messages and the products are delivered in the same

IMS format [IDC3.4.1]. The Message Subsystem is also used by the Request Sub-

system to send requests to auxiliary seismic stations and to receive and parse the

responses. The Message Subsystem parses the data messages from radionuclide

stations and supplementary seismic bulletins. Incoming subscription messages are

routed to the Subscription Subsystem, and subscription data messages are deliv-

ered by the Message Subsystem.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Overview

M a y 1 9 9 8

S o f t w a r e
Users of the Message Subsystem must have access to a Simple Mail Transfer Pro-

tocol (SMTP) agent. An FTP application is needed to obtain voluminous products.

It is also advisable to have software to parse the delivered data.

FIGURE 2. RELATIONSHIP OF MESSAGE SUBSYSTEM TO OTHER

SOFTWARE UNITS OF DATA SERVICES CSCI

a
IMS

Continuous
Data Station

D1
Operations
database

f

forwarded IMS data

b
State Party

supplemental
data

Archive
Subsystem

5

Web
Subsystem

6
Web
users

g
product

subscriber

h
AutoDRM
requester

Subscription
Subsystem

4

Message
Subsystem

2

d
IMS

auxiliary
seismic station

request

response

GSE data
message

GSE request
message

formatted
subscription product

subscription requestc
IMS

radionuclide
station

D2
Archive
database

event
list

Retrieve
Subsystem

3

radionuclide
message

GSE origin
message

formatted
GSE request

parsed
data

product
data

register
subscription

queued
product data

IMS
data

e
State Party
receiving

continuous
data

subscription
data

Continuous
Data

Subsystem

1

5

Overview ▼

I D C D O C U M E N T A T I O N

6

S o f t w a r e
IDENT IF ICAT ION

The Message Subsystem’s components are identified in Table 1.

STATUS OF DEVELOPMENT

The Message Subsystem is almost completely developed. In the future, the Mes-

sage Subsystem will verify users and will order requests to be processed in a more

deterministic way. Additional products and formats will be supported. A graphi-

cally based control and monitoring program will be developed.

TABLE 1: COMPONENTS OF MESSAGE SUBSYSTEM

Component System
Version Component Release Version

AutoDRM 6.0 Message Subsystem Release 6.0

MessageAlert 6.0 Message Subsystem Release 6.0

MessageFlow not released not implemented

MessageFTP 6.0 Message Subsystem Release 6.0

MessageGet 6.0 Message Subsystem Release 6.0

MessageReceive 6.0 Message Subsystem Release 6.0

MessageShip 6.0 Message Subsystem Release 6.0

MessageStore 6.0 Message Subsystem Release 6.0

ParseData 6.0 Message Subsystem Release 6.0
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Overview

M a y 1 9 9 8

S o f t w a r e
BACKGROUND AND H ISTORY

David Corley of the Center for Monitoring Research (CMR) developed the Mes-

sage Subsystem in 1995. The underlying software and database tables were mod-

ified extensively by Joe deBuzna and others in 1996.

The Message Subsystem, first used operationally in December 1995, currently is

an element of the Prototype International Data Centre (PIDC) at the CMR in

Arlington, Virginia, U.S.A. The software was also installed at the U.S. NDC

(National Data Center) in Melbourne, Florida, U.S.A. in July 1997.

The International Data Centre of the Comprehensive Nuclear Test-Ban Treaty

Organization (CTBTO IDC) in Vienna, Austria, is expected to install the Message

Subsystem software.

The Operations staff of the IDC is responsible for operating the Message Sub-

system. The level of operational involvement is expected to be slight, because the

system is designed to run automatically. The software will be maintained by Sci-

ence Applications International Corporation (SAIC) and the CMR through the

Software Modification Request (SMR) process.

OPERAT ING ENVIRONMENT

The following paragraphs describe the hardware and commercial-off-the-shelf

(COTS) software required to operate the Message Subsystem.

Hardware

The Message Subsystem software is designed to run on a UNIX workstation such

as the SPARCstation 20/612. Typically, the hardware is configured with 64 MB of

memory and a minimum of 2 GB of magnetic disk. The Message Subsystem must

obtain other services (such as database access and mail) over its Ethernet connec-

tion to other computers. Figure 3 shows a representative hardware configuration.
7

Overview ▼

I D C D O C U M E N T A T I O N

8

S o f t w a r e
FIGURE 3. REPRESENTATIVE HARDWARE CONFIGURATION FOR

MESSAGE SUBSYSTEM

Commerc i a l -Of f - the -She l f
So f tware

The Message Subsystem has been developed under Solaris 2.5 and ORACLE 7.2.3

and has been tested under Solaris 2.6. The software requires access to a SMTP

mail transfer agent such as sendmail.

 monitor

2.0 GB disk SPARC 20 Model 612

64 MB RAM

1.05 GB Internal Disk

Local Area Network
M a y 1 9 9 8

M a y 1 9 9 8

I D C D O C U M E N T A T I O N

S o f t w a r e
Arch i tec tu ra l Des i gn

This chapter describes the architectural design of the Message Subsystem and

includes the following topics:

■ Conceptual Design

■ Design Decisions

■ Functional Description

■ Interface Design
9

Architectural
Design

▼

I D C D O C U M E N T A T I O N

10

S o f t w a r e
Arch i tec tu ra l Des i gn

CONCEPTUAL DES IGN

The Message Subsystem provides the infrastructure for the exchange of intermit-

tent data among the IDC, external users, and data providers. The data range from

raw timeseries and radionuclide spectra to IDC products, such as reports and bul-

letins. The data are sent as messages, and adhere to the IMS 1.0 [IDC3.4.1] for-

mat (which descended from GSE 2.0 [GSE95a] and RMS 2.0 formats). The

protocols used for data exchange are UNIX mail (sendmail) and FTP. The Message

Subsystem supports both one time requests and a subscription service, which is

described in [IDC7.4.4].

DES IGN DEC IS IONS

The following design decisions pertain to the Message Subsystem.

Prog ramming Language

Each software unit of the Message Subsystem is written in the C programming

language unless otherwise noted in this document.

Globa l L ib ra r i e s

The software of the Message Subsystem is linked to the following (developmen-

tal) libraries: libdrm, liblogout, libpar, libtime, libinterp, libaesir, and libgdi.

The software of the Message Subsystem is also linked to the following COTS

libraries: libsql, libsqlnet, libncr, libclient, libcommon, libgeneric, libepc,

libnlsrtl3, libc3v6, libcore3, libm, libF77, and libdl.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Architectural
Design

M a y 1 9 9 8

S o f t w a r e
Database

The Message Subsystem obtains data from the ORACLE database. Numerous

tables in the database were created specifically for the Message Subsystem. These

tables record information about messages and their state of processing.

I n te rp rocess Commun ica t ion (IPC)

The Message Subsystem does not utilize the message service of the Distributed

Application Control System (DACS).

F i l e Sys tem

The file system holds the run-time parameters of the Message Subsystem (par

files). The Message Subsystem also reads and writes the formatted messages to

the file system. Descriptors to these files are stored in the ORACLE database. Each

programs’ log file is written to the file system.

UNIX Ma i l

Messages are received and delivered by UNIX mail. The Message Subsystem

stores a reference to each mail file and its status in the ORACLE database.

FTP

Products that are too large for reliable mail delivery are posted to an FTP directory;

users are notified of the products’ availability.

Web

A hypertext markup language (HTML) form allows users to submit data requests.

For security reasons, the output of the form is sent to the Message Subsystem,

and the response is delivered via email.
11

Architectural
Design

▼

I D C D O C U M E N T A T I O N

12

S o f t w a r e
Des ign Mode l

The design of the Message Subsystem is primarily influenced by timeliness, flexi-

bility, and reliability requirements. Although the system must process messages in

a timely manner, a limited delay is acceptable to allow for IPC. Reliability and

long-term tracking of the messages are also critical requirements. Thus, the system

uses the IDC’s database for both IPC and to archive the processing information.

Database Schema Overv iew

The Message Subsystem uses the ORACLE database for the following purposes:

■ to record the state of message processing

■ to describe flat files containing the actual incoming and outgoing mes-

sages

■ to provide a link between data requests and responses

Table 2 shows the tables used by the Message Subsystem. The Name field identi-

fies the database table. The Mode field is “R” if the Message Subsystem reads

from the table and “W” if the system writes to the table. The Owner field indi-

cates who has administrative control over the table. The “DBA” (Database

Administrator) owns standard tables that are part of the core schema. The “MSG”

(Message Subsystem) owns tables that are private to the Message Subsystem and

are not accessed by any other software. The “RTR” (Retrieve Subsystem) owns

the request table. The “RDBA” (Radionuclide Database Administrator) owns tables

that are private to the radionuclide data processing software.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Architectural
Design

M a y 1 9 9 8

S o f t w a r e
TABLE 2: DATABASE TABLES USED BY MESSAGE SUBSYSTEM

Name Mode Owner Description

datauser R/W MSG holds information about each user
of the Message Subsystem

ftpfailed R/W MSG holds tracking information on data
messages transferred by FTP

ftplogin R/W MSG holds FTP login and password data

msgaux R/W MSG holds data for tracking unsuccess-
fully processed messages

msgdatatype R/W MSG holds status data for individual data
sections of data messages

msgdest R/W MSG holds information about messages
sent from the IDC

msgdisc R/W MSG holds message information including
date and time message was sent and
received

poc R MSG holds point of contact information
for an organization

request R RTR holds information needed to retrieve
data from stations of the auxiliary
seismic network

arrival R DBA holds summary information on a
seismic arrival

arrivalamp R DBA holds amplitude measurements for
arrival records

assoc R DBA holds data associating arrivals with
origins

beamaux R DBA holds calibration information for
beams

instrument R DBA holds station calibration information

interval R DBA holds information about the status
of the Reviewed Event Bulletin
(ParseData)
13

Architectural
Design

▼

I D C D O C U M E N T A T I O N

14

S o f t w a r e
lastid R/W DBA holds information on the last
sequential value of one of the
numeric keys

netmag R/W DBA holds estimates of network magni-
tudes

origaux R/W DBA holds additional data for supplemen-
tary events

gards_detectors R RDBA contains detector overviews and
characteristics

gards_notify R RDBA contains contact information for
specific occurrences

gards_stations R RDBA contains station overview and char-
acteristics

gards_userenv R RDBA contains configurable variables used
in radionuclide monitoring station
software

gards_efficiency_pairs R/W RDBA contains efficiency calibration pairs
information associated with samples

gards_energy_pairs R/W RDBA contains energy calibration pairs
information associated with samples

gards_resolution_pairs R/W RDBA contains resolution calibration pairs
information associated with spectral
pulse height data

gards_sample_data R/W RDBA contains data from sample, blank,
and calibration pulse height data
messages

gards_alerts W RDBA contains data describing all radionu-
clide alert messages received

gards_data_log W RDBA contains data describing all radionu-
clide data messages received

gards_dose_data W RDBA contains station average dose rate
information during specific time
intervals

TABLE 2: DATABASE TABLES USED BY MESSAGE SUBSYSTEM (CONTINUED)

Name Mode Owner Description
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Architectural
Design

M a y 1 9 9 8

S o f t w a r e
gards_efficiency_cal W RDBA contains efficiency calibration equa-
tion information associated with
samples

gards_energy_cal_orig W RDBA contains energy calibration equa-
tion information associated with
samples

gards_environment W RDBA contains atmospheric conditions and
related sample information

gards_flow_data W RDBA contains station flow rate data

gards_met_data W RDBA contains station local meteorologi-
cal data

gards_resolution_cal W RDBA contains resolution calibration equa-
tion information associated with
spectral pulse height data

gards_sample_aux W RDBA contains auxiliary information
related to raw sample data

gards_sample_cert W RDBA contains overview information
regarding certificate data corre-
sponding to calibration pulse height
data

gards_sample_cert_lines W RDBA contains nuclide information regard-
ing certificate data corresponding to
calibration pulse height data

gards_sample_description W RDBA contains description and comment
text included within sample file

gards_sample_status W RDBA contains spectral processing data

gards_total_effic W RDBA contains detector total efficiency
data calculated during calibration

TABLE 2: DATABASE TABLES USED BY MESSAGE SUBSYSTEM (CONTINUED)

Name Mode Owner Description
15

Architectural
Design

▼

I D C D O C U M E N T A T I O N

16

S o f t w a r e
FUNCT IONAL DESCR IPT ION

The Message Subsystem consists of four functions: a function for importing mes-

sages, a function for routing messages, a function for processing messages, and a

function for exporting messages.

Figure 4 shows the major functions of the Message Subsystem. Incoming mes-

sages are received by UNIX mail or FTP and are routed based on the message

type. Messages of an unknown type are forwarded to an operator. Data messages

are parsed, and the data (or pointers to the data, in the case of a waveform) are

stored in the database. Subscription messages are routed to the Subscription Sub-

system. Data request messages are fulfilled by AutoDRM. An FTP_LOG message

initiates the MessageFTP process, which retrieves data from a remote site using

the FTP protocol. Outgoing messages that fulfill a data request or subscription are

exported using UNIX mail or FTP. The Retrieve Subsystem also uses the Message

Subsystem to send data requests to stations of the auxiliary seismic network.

Impor t ing Messages

Figure 4 illustrates the import function as follows: messages are imported using

the email or FTP protocol. Each incoming message is written to the UNIX file sys-

tem and an entry is added to the msgdisc table, which records the location, date,

time, size, and status of the message.

Rout ing Messages

The routing function of the Message Subsystem passes each entry in the msgdisc

table with a status of RECEIVED to the appropriate process based on the message

type as recorded in the msgdisc table. For each type, a parameter specifies how the

message shall be routed (which processing program) and what parameters to use.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Architectural
Design

M a y 1 9 9 8

S o f t w a r e
FIGURE 4. FUNCTIONAL DESIGN OF THE MESSAGE SUBSYSTEM SOFTWARE

message
Export

ops db

request
Process Data

(AutoDRM)

message
Process data

(ParseData)
Subsystem

Subscription

Subsystem
Retrieve

message
Route

message
Import

User

retrieval
FTP

unknown

data

FTP_LOG
data request

subscription
request

incoming
message

outgoing
message

Operator

unknown
Process

message
17

Architectural
Design

▼

I D C D O C U M E N T A T I O N

18

S o f t w a r e
Process ing Messages

The processing function of the Message Subsystem reads and writes to a variety

of tables. Incoming data messages are parsed by ParseData. Data from incoming

timeseries data messages are written to the following tables: msgdatatype, origin,

origaux, origerr, outage, remark, netmag, or wfdisc.

Data from incoming radionuclide data messages are written to the following

tables: gards_alerts, gards_dose_data, gards_flow_data, gards_met_data,

gards_sample_data, gards_sample_aux, gards_sample_description, gards_sample_status,

gards_environment, gards_energy_cal_orig, gards_energy_pairs, gards_resolution_cal,

gards_resolution_pairs, gards_efficiency_cal, gards_efficiency_pairs, gards_total_effic,

gards_sample_cert, gards_sample_cert_lines, gards_sample_cert, and gards_data_log.

Incoming data requests are processed by AutoDRM, which queries many data

base tables (affiliation, arrival, arrivalamp, assoc, beamaux, ceppks, complexity, originamp,

splp, spvar, evchar, flatdescription, flatproduct, instrument, netmag, origerr, origin, origaux,

remark, sbsnr, sensor, site, sitechan, stamag, wfdisc, wfseg, or wftag). FTP_LOG messages

are processed by MessageFTP, which retrieves the specified file using the FTP pro-

tocol. FTP login information is read from the ftplogin table and FTP failures are

recorded in the ftpfailed table.

Subscription messages are processed by the Subscription Subsystems. Tables used

by Subscription Subsystem are described in the Subscription Subsystem

[IDC7.4.4].

Table 3 maps data types to the database tables. The data types are defined in

[IDC3.4.2], which explains the IMS 1.0 formats.

Expor t ing Messages

The export function of the Message Subsystem can be thought of as the mailing

agent. Inputs are messages that need to be delivered, which have entries in the

msgdisc and msgdest tables. The messages are sent using UNIX mail, or are placed

in a local FTP directory, and a notification (FTP_LOG) message is sent. In both

cases the status attribute in the msgdest table is updated to DONE.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Architectural
Design

M a y 1 9 9 8

S o f t w a r e
TABLE 3: MAPPING DATA TYPES TO DATABASE TABLES

Database Table Data Type

origin
origaux
origerr
(remark)
netmag

origin
(supplementary seismic bulletin)

outage outage

wfdisc
(outage)

waveform

gards_alerts
gards_data_log

alert

gards_dose_data
gards_data_log

dose

gards_met_data
gards_data_log

met

gards_flow_data
gards_data_log

flow

gards_sample_cert_lines
gards_sample_data
gards_efficiency_cal
gards_efficiency_pairs
gards_total_effic
gards_energy_pairs
gards_resolution_cal
gards_resolution_pairs
gards_sample_status
gards_environment
gards_energy_cal_orig
gards_sample_aux
gards_sample_description
gards_sample_cert
gards_data_log

phd
19

Architectural
Design

▼

I D C D O C U M E N T A T I O N

20

S o f t w a r e
INTERFACE DES IGN

This section describes how the Message Subsystem interfaces with other IDC sys-

tems, external users, and operators.

I n te r f ace w i th Othe r IDC Sys tems

The Message Subsystem sends subscription messages to the Subscription Sub-

system. It also formats and delivers subscription data on behalf of the Subscription

Subsystem. The Message Subsystem also provides a delivery service for requests

originating from the Retrieve Subsystem and processes the incoming responses to

those requests. All messages are exchanged using the email or FTP protocols.

I n te r f ace w i th Ex te rna l Use r s

The Message Subsystem was designed to interface with external users using mes-

sages in IMS 1.0 (GSE 2.0 or RMS 2.0) format. Messages are exchanged using

email or FTP protocols. Waveform requests are generated by the Retrieve Sub-

system, and are sent to stations of the auxiliary seismic network, where the

requests are fulfilled and sent back to the Message Subsystem. When a product

subscriber sends a subscription request, a subscription is initiated at the IDC. The

Message Subsystem processes the products from that subscription and delivers

them to the subscriber. When an AutoDRM user sends a request for data, the data

are processed and a response message is returned. Both IMS supplemental data

and radionuclide data are sent to the Message Subsystem when they become

available at the data source.

I n te r f ace w i th Opera to r s

The Message Subsystem exchanges data with system operators by forwarding

copies of messages with unknown types, and by storing the state of the Message

Subsystem in the database. The operator may monitor and maintain the Message

Subsystem by using SQL commands directly or by using MessageFlow, the graph-

ical user interface for the Message Subsystem. The Message Subsystem was

designed to require minimum operator intervention.
M a y 1 9 9 8

M a y 1 9 9 8

I D C D O C U M E N T A T I O N

S o f t w a r e
Deta i l ed Des i gn

This chapter describes the detailed design of the Message Subsystem and includes

the following topics:

■ Data Flow Model

■ Software Units

■ Database Description
21

Detai led
Design

▼

I D C D O C U M E N T A T I O N

22

S o f t w a r e
Deta i l ed Des i gn

DATA FLOW MODEL

The data flow model of the Message Subsystem is shown in Figure 5. All incoming

email messages are received by MessageStore (process 1) and are placed in the

temporary storage directory. MessageReceive (process 2) is a continually running

process, which reads the files from the temporary storage directory, moves them

to a more permanent disk area, and writes a pointer for the message in the msgdisc

table in the database. MessageReceive also authenticates users based on data in

the datauser table. MessageGet (process 4) finds new entries in the msgdisc table,

orders them based on information in the datauser table, and routes each new

incoming message to the appropriate destination. Incoming data messages are

sent to ParseData (process 9), which parses the data into the database. Incoming

data requests are routed to AutoDRM (process 8), which processes the request

and writes the outgoing message. A reference for this outgoing message is written

to the msgdisc table. AutoDRM processes requests generated by the Subscription

Subsystem in a similar manner. Subscription messages are routed to the Subscrip-

tion Subsystem. FTP_LOG messages are sent to MessageFTP (process 3), which

retrieves the specified file using the FTP protocol and places the new message in

the temporary storage directory. Each unknown message is forwarded to Mes-

sageAlert (process 7), which mails each failed message to the Message Subsystem

operator.

In addition to outgoing data messages generated by AutoDRM, outgoing data

request messages are generated by MessageSend (process 6). MessageSend is

invoked by the Retrieve Subsystem. MessageShip (process 5) recognizes all outgo-

ing messages and either mails the message or makes it available by FTP, depend-

ing upon the size of the message.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
FIGURE 5. PROCESS VIEW OF MESSAGE SUBSYSTEM

user
AutoDRM

data
supplemental

IMS

station
radionuclide

IMS

station
seismic
auxiliary

IMSa

c

d

e

Subsystem
Retrieve

f

Operator

g

Subsystem
Subscription
h

Ops working
directoryD3

local FTP
directoryD4

Ops working
directoryD3

Daemons
FTP

10

AutoDRM

8

Receive
Message

2

email

remote FTP
directoryD5

MessageShip

5

MessageGet

4

MessageAlert

7

ParseData

9

MessageFTP

3

MessageStore

1

MessageSend

6

data
message

response

data
request

message
pointer

> 100 KB

parsed
data

subscription
message

FTP
log

unknown
message

email

subscriber
product

b

GSE 2.0
RMS 1.0
message

Operations
databaseD2

message message

FTP
transaction

message
pointer

AutoDRM
request

temporary
storeD1

Operations
databaseD2
23

Detai led
Design

▼

I D C D O C U M E N T A T I O N

24

S o f t w a r e
SOFTWARE UNITS

The Message Subsystem consists of the following software units:

■ MessageStore

■ MessageReceive

■ MessageGet

■ ParseData

■ AutoDRM

■ MessageFTP

■ MesssageAlert

■ MessageSend

■ MessageShip

■ MessageFlow

The following paragraphs describe the design of these units, including any con-

straints or unusual features in the design. The logic of the software and any appli-

cable procedural commands are also provided.

MessageSto re

MessageStore accepts an incoming email message and stores it in an individual file

in a temporary directory as efficiently as possible. The format of the message is

not considered.

I nput /P rocess ing /Output

MessageStore reads a message from standard input and writes the message to the

temporary storage directory. The path to the temporary storage directory may be

given as the first argument on the command line, otherwise the directory /tmp is

used. Any error messages are written to standard output.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
Cont ro l

MessageStore is invoked when a mail message is received by the Message Sub-

system mail alias. Mail is directed to MessageStore from sendmail by either a

.forward file or other mail alias. MessageStore terminates after the message is

written to the temporary storage directory. If the program runs successfully, the

exit status is zero.

I n te r f aces

MessageStore interfaces with sendmail when it reads the message from standard

input. The other interface is with the file system, where the message is written.

MessageStore has no significant internal interfaces.

Er ro r S ta tes

If the file system becomes full, the program will fail and the mail will be returned

to the sender. If the temporary storage directory is not writable, the program will

fail.

MessageRece i ve

MessageReceive reads incoming message files from a temporary directory, stores

the messages in a permanent directory, and records the message pointer in the

database.

I nput /P rocess ing /Output

MessageReceive retrieves incoming messages from the temporary storage direc-

tory and moves them to a permanent directory. MessageReceive authenticates

users based on the digital signature in the message. If no digital signature is

present, the address in the mail header will be compared with the entries in the

datauser table. MessageReceive creates a msgdisc table entry with a status of

RECEIVED and msgtype of either DATA, SUBSCRIPTION, REQUEST, FTP_LOG, or

UNKNOWN. If the body of the incoming message contains HELP or PLEASE HELP,
25

Detai led
Design

▼

I D C D O C U M E N T A T I O N

26

S o f t w a r e
the file help_file is returned via email. If the parameter help_file is not

defined, then MessageReceive forwards the message to AutoDRM to return its

help_file.

All parameters are described in the MessageReceive manual page. All log informa-

tion is written to the file system, as specified in the man page for liblogout).

Cont ro l

MessageReceive is one of three continuously running programs initiated at boot

time with a shell script executed in the local directory of the Message Subsystem

host computer.

After storing messages, MessageReceive sleeps for sleep_time seconds and

then checks to see if any new messages have been written to the temporary stor-

age directory. If so, the process is repeated, otherwise MessageReceive sleeps for

another sleep_time seconds. MessageReceive will exit if it finds a file named

.end in the temporary storage directory.

I n te r f aces

MessageReceive retrieves incoming messages that have been written in the tem-

porary storage directory. A new msgdisc entry is made in the database and the

message is copied to the msgdir directory. If the database cannot be opened, the

message is copied to the stagedir directory. When the database is successfully

opened, any messages under the stagedir directory are copied to the msgdir

directory and appropriate msgdisc entries are recorded in the database. After the

message is successfully copied to the msgdir or stagedir directory, the message

is removed from the temporary storage directory.

Er ro r S ta tes

If MessageReceive is unable to write to disk, it will exit and leave the file in the

temporary storage directory for the next invocation of MessageReceive. If Mes-
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
sageReceive is unable to write to the database, it will write the file to an alterna-

tive directory and exit.

MessageGet

MessageGet forwards messages either to one of the processes AutoDRM, Parse-

data, MessageFTP, MessageAlert, or to Subscription Subsystem.

I nput /P rocess ing /Output

MessageGet checks for messages with the status of RECEIVE in the msgdisc table.

The output consists of changes in the msgdisc table and other processes that are

forked by MessageGet. Status may be updated in the msgdisc table to QUEUED if

the request is forwarded or to status-parameter on the first pass if the

parameter flush-queued is enabled. For each message to be processed,

MessageGet forks the appropriate child process. The exit status of the child pro-

cess is captured. If the status is non-zero and the current msgdisc status will block

the queue, the msgdisc status is updated to the value given by the par value

status_child_fails.

All parameters are described in the MessageGet manual page. All log information

is written to the file system, as specified in the man page for liblogout.

Cont ro l

MessageGet is one of three continuously running programs initiated at boot time

with a shell script executed in the local directory of the Message Subsystem host.

MessageGet terminates when it receives a fatal signal.

I n te r f aces

MessageGet finds records with status QUEUED and forks the appropriate process

for each new message. Data requests are sent to AutoDRM; data messages are

sent to ParseData; Subscription messages are sent to the Subscription Subsystem;
27

Detai led
Design

▼

I D C D O C U M E N T A T I O N

28

S o f t w a r e
FTP_LOG messages are sent to MessageFTP; and unknown messages are sent to

MessageAlert.

If the message type is recognized and if less than max-queued records of that

type are already queued and if less than max-parsing of that type are already

either running or queued, then the new record is forwarded to its destination and

its status is changed to QUEUED. Otherwise, it is skipped until the next pass

through the loop. Finally, MessageGet closes the database. If loop is enabled and

sleep-time exceeds zero, MessageGet will repeat its procedures. Otherwise, it

exits.

Er ro r S ta tes

MessageGet will fail if it is unable to fork a child process. If MessageGet fails, it will

kill the process and set the msgdisc status to a value indicating that the child failed.

MessageGet relies heavily on the database. In the case of a failure to connect to

the database, it will keep trying to connect until it is successful. If the database

fails during operation of MessageGet, MessageGet will abort, and the pipeline

operators will need to repair the database attributes, because MessageGet will be

unable to accomplish that function.

Par seData

ParseData parses incoming data messages into the database.

I nput /P rocess ing /Output

ParseData interrogates the msgdisc table and then the message from disk. In the

case of supplemental data, one or more records are written to the origin, origaux,

origerr, netmag, and remark database tables, or, in the case of waveform data, a

record is written to the wfdisc table, and the waveform file is written to disk.

In the case of radionuclide data, information is first written to the msgdisc table,

and then the radionuclide file is written to disk. Then the rms_pipeline script is

called. This script calls rms_input, which parses the message and inserts the data
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
into the following database tables: gards_alerts, gards_dose_data, gards_flow_data,

gards_met_data, gards_sample_data, gards_sample_aux, gards_sample_description,

gards_sample_status, gards_environment, gards_energy_cal_orig, gards_energy_pairs,

gards_resolution_cal, gards_resolution_pairs, gards_efficiency_cal, gards_efficiency_pairs,

gards_total_effic, gards_sample_cert_lines, gards_sample_cert, and gards_data_log.

All parameters are described in the ParseData manual page.

All log information is written to the file system, as specified in the man page for

liblogout.

Cont ro l

MessageGet forks a child process to initiate ParseData, which terminates after the

data have been parsed into the database. On failure, ParseData returns a non-

zero exit status.

I n te r f aces

ParseData reads the msgdisc table in the given database and finds the record with

the given msgid. The message on disk pointed to by the msgdisc record is read

and is parsed based on the type read from the message. As a result of this parsing

the information from the message is placed in the database. ParseData will read

through the entire file on disk and will parse all messages contained in the file.

When parsing begins, the status attribute in the msgdisc table is changed to PARS-

ING. If ParseData successfully parses the messages, status is changed to DONE. If

any format errors are encountered in the message, status is changed to PARSE-

ERROR. Any other error changes the status to FAILED.

Er ro r S ta tes

ParseData rejects improperly formatted messages and mails them to the operator.

If ParseData fails to connect to the database, ParseData returns a non-zero exit

status to the parent process.
29

Detai led
Design

▼

I D C D O C U M E N T A T I O N

30

S o f t w a r e
AutoDRM

AutoDRM provides automated email message responses to requests for data,

which arrive by mail or are generated by the Subscription Subsystem.

I nput /P rocess ing /Output

AutoDRM provides automated email message responses to requests for data. The

design of the AutoDRM message exchange is based on the protocols and formats

adopted by the Group of Scientific Experts (GSE) for the GSE Technical Test 3

(GSETT3) requirements. The current standard, denoted IMS 1.0 is described in

[IDC3.4.1].

A request message consists of a series of free-format command lines that provide

information about the return message (response control lines), set the environ-

ment for subsequent request lines (environment lines), or specify the type of data

that are to be returned within the limits of the environment (request lines). Mes-

sage formats are described in [IDC3.4.1]. AutoDRM also formats the subscription

products.

AutoDRM creates the data response and makes a msgdisc entry with status of NEW

and a msgdest entry with a status of PENDING.

All parameters are described in the AutoDRM manual page. All log information is

written to the file system, as specified in the man page for liblogout.

Cont ro l

For data requests that arrive by mail, AutoDRM is invoked as a child process by

MessageGet. Upon updating the msgdisc and msgdest status fields with NEW and

PENDING, the program exits with status equal to zero.

AutoDRM is also invoked as a child process of the SubsProcess software, a com-

ponent of the Subscription Subsystem.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
I n te r f aces

AutoDRM processes the request given in the specified message. In the course of

fulfilling the request, many database tables are queried. The outgoing data mes-

sage is written, along with the corresponding msgdisc and msgdest table entries.

Er ro r S ta tes

The program will fail if it cannot access the mass storage device. If the file from

the wfdisc cannot be read or opened, the status attribute of the msgdisc table is set

to STANDBY. A reply message is returned to the requestor describing the problem.

If the program cannot access the database, it exits with a non-zero status, and the

parent process handles the error.

MessageFTP

MessageFTP is used to copy a file (using FTP) from remote sites to the IDC, upon

receipt of an FTP_LOG message.

I nput /P rocess ing /Output

The input to MessageFTP is the msgid of an FTP_LOG message. MessageFTP

attempts to retrieve the message specified in the FTP_LOG message. Successfully

retrieved data are stored in the temporary storage directory, and the status

attributes in msgdisc and ftpfailed (if the record exists) tables are updated to DONE.

Otherwise, status of the ftpfailed and msgdisc tables is updated to RETRY. Mes-

sageGet periodically updates the status attribute of the msgdisc table for these

types of messages from RETRY to RECEIVED, which results in another attempt by

MessageFTP.

All parameters are described in the MessageFTP manual page. All log information

is written to the file system, as specified in the man page for liblogout.
31

Detai led
Design

▼

I D C D O C U M E N T A T I O N

32

S o f t w a r e
Cont ro l

MessageFTP is a child process spawned by MessageGet. When MessageFTP

begins, it updates the status attribute of msgdisc to RUNNING. MessageFTP termi-

nates after the FTP retrieval fails or succeeds.

I n te r f aces

MessageFTP retrieves the file specified in the FTP_LOG message passed by the

msgid on the command line. An FTP session is initiated by the remote FTP site,

and the specified file is written to the local temporary storage directory.

Er ro r S ta tes

If MessageFTP cannot connect to or communicate with the database, it returns a

non-zero exit status. If the remote FTP file does not exist or if the data are not

retrieved after several attempts, MessageFTP updates the status in the msgdisc and

ftpfailed tables to FAILED.

MessageA le r t

MessageAlert sends email to specified users regarding an unrecognized message.

I nput /P rocess ing /Output

MessageAlert reads the msgdisc table in the database and finds the record with the

given msgid. The msgdisc record points to the file containing the message on disk,

which MessageAlert reads and mails to the users specified by alert-email.

When processing begins, status in the msgdisc table is updated to RUNNING. Once

the mail is sent, the status is updated to DONE.

All parameters are described in the MessageAlert manual page. All log information

is written to the file system, as specified in the man page for liblogout.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
Cont ro l

MessageGet forks a child process to initiate MessageAlert. MessageAlert mails the

operator the message and then exits with a zero exit status.

I n te r f aces

MessageAlert reads the specified message and mails it to the operator using the

UNIX mailx command.

Er ro r S ta tes

If MessageAlert cannot access the database or read the message from disk, it will

exit with a nonzero status, and the parent process handles the error.

MessageSend

MessageSend supports the gathering of timeseries data from stations of the auxil-

iary seismic network. It accepts data specifications from the Retrieve Subsystem. It

formats the specifications into messages that adhere to the standard protocol

[IDC3.4.1]). It dispatches the message requesting data through UNIX mail.

MessageSend assumes that its message is received by an AutoDRM process.

I nput /P rocess ing /Output

MessageSend reads a message from standard input and writes the entire message

to disk under the msgdir directory. Entries are made in the msgdisc and msgdest

tables with the status of NEW and PENDING for the new message. Currently, Mes-

sageSend is called exclusively by dispatch, a software component of the Retrieve

Subsystem. Dispatch writes the request portion of the message and then Messag-

eSend creates the header and STOP lines of the message.

All parameters are described in the MessageSend manual page. All log information

is written to the file system, as specified in the man page for liblogout.
33

Detai led
Design

▼

I D C D O C U M E N T A T I O N

34

S o f t w a r e
Cont ro l

MessageSend is executed by dispatch and terminates after the message read from

standard input is processed.

I n te r f aces

MessageSend is invoked as a child process of dispatch. It reads the body of the

message from standard input and adds the header and STOP line to the message.

The message is written to a permanent directory and records are written to the

msgdisc and msgdest tables.

Er ro r S ta tes

If MessageSend cannot access the database, it exits with a non-zero status and the

parent process handles the error. This is also the result if the program cannot write

the message to disk.

MessageSh ip

MessageShip mails messages to recipients.

I nput /P rocess ing /Output

MessageShip finds entries in the msgdisc and msgdest tables in the database where

the status in the msgdest table is PENDING and the msgids in both tables are the

same. If the method in msgdest is FTP, a notification message is mailed, and the

message is copied to a standard directory of the file system on the machine speci-

fied by ftp_host. If the method in msgdest is mail, the message is mailed using

the UNIX mailx command. In either case, the status in msgdest is updated to

DONE.

All parameters are described in the MessageShip manual page. All log information

is written to the file system, as specified in the man page for liblogout.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
Cont ro l

MessageShip is one of three continuously running programs initiated at boot time

with a shell script executed in the local directory of the Message Subsystem host.

If loop is set, MessageShip will run in loop mode. Otherwise, the program will

query the tables, send any pending messages, and exit.

I n te r f aces

MessageShip processes messages whose entries in the msgdisc table have the sta-

tus of PENDING. If the method in the msgdest table is FTP, the message is copied to

the FTP directory and a notification message is mailed. Otherwise, the message is

mailed with the UNIX mailx command.

Er ro r S ta tes

MessageShip will fail if it is unable to write to the FTP directory. If the program

cannot access the database, processing halts and the message is delivered when

the database recovers.

MessageF low

MessageFlow provides a graphical user interface for monitoring and controlling

the Message Subsystem.

I nput /P rocess ing /Output

MessageFlow reads from database tables of the Message Subsystem and displays

the current status of the Message Subsystem in a graphical user interface. Con-

trols exist for stopping and starting the Message Subsystem, modifying the pro-

cessing queues, and retrieving detailed information for a particular message.
35

Detai led
Design

▼

I D C D O C U M E N T A T I O N

36

S o f t w a r e
Cont ro l

MessageFlow is started when the user invokes the program and terminates when

the user selects the exit button within the graphical user interface.

I n te r f aces

MessageFlow reads from the Message Subsystem database tables and is capable

of changing the status attributes in some tables. The temporary storage directory

can be monitored. Signals can be sent to other components of the Message Sub-

system, and MessageFlow can write an .end file to stop MessageReceive. Mes-

sageFlow can also restart the Message Subsystem.

Er ro r S ta tes

MessageFlow will have reduced capability if it cannot connect to the database. If

MessageFlow is not running on the same machine as the Message Subsystem, sig-

nals cannot be sent to the programs, and the Message Subsystem cannot be

restarted.

DATABASE DESCR IPT ION

This section describes the database design and schema. The Message Subsystem

uses the database for all interprocess communication, primarily through status

attributes. All code accesses the database using the Generic Database Interface

(GDI) [And94].

Database Des i gn

The Message Subsystem uses a database for storing, tracking, and queuing prod-

ucts. The entity-relationship model of the schema is indicated in Figure 6. The fun-

damental database table for the Message Subsystem is the msgdisc table. Each

message has one entry in the msgdisc table; the entry is stored outside of the data-

base as a flat file. Msgid is the primary key for the msgdisc table.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
FIGURE 6. ENTITY-RELATIONSHIP OF MESSAGE SUBSYSTEM TABLES

The msgdatatype table is used to record the status of information within a message.

For example, the status of each data section within a single data message is

recorded in this table. When MessageFTP fails to retrieve a message using the FTP

protocol, the failure is recorded in the ftpfailed table. FTP login information is

msgdisc

msgid
intid

msgid
msgver
extmsgid
intid
intidtype
msgtype
subtype
msgsrc
itime
idate
imethod
isrc
msize
status
subject
dir
dfile
foff
mfoff
commid
lddate

msgdest

msgdid
msgid

msgdid
msgid
transmeth
emailto
status
stime
itime
lddate

msgdatatype

msgid
foff

msgid
msgdtype
msgdformat
status
foff
msize
lddate

msgaux

msgid
msgrow

state_count

msgid
msgrow
state_count
command
sub_status
lddate

request

reqid
orid
evid

reqid
sta
chan
array
orid
evid
start_time
end_time
class
state
statecount
complete
requestor
modtime
modauthor
lddate

ftpfailed

msgid
ftp_address

msgid
ftp_address
numfailedattempt
lastfailedtime
status
lddate

ftplogin

ftp_address

ftp_address
username
password
lddate

msgid

msgid

msgid

intid-requid
37

Detai led
Design

▼

I D C D O C U M E N T A T I O N

38

S o f t w a r e
recorded in the ftplogin table for those sites that do not support anonymous FTP.

Each outgoing message also has an entry in the msgdest table; the entry specifies

where the message should be sent and how it should be delivered. The msgaux

table records failures in responding to requests for data from the IDC.

For each request generated by the Retrieve Subsystem, an entry is written to the

request table. This request is linked to the msgdisc table by the initid, which is set

equal to the reqid in the request table. The intidtype attribute is set to REQID.

The datauser table records information about each user of the Message Subsystem.

The poc table records a single point of contact for each NDC or agency.

Database Schema

The Message Subsystem owns the following tables, which are detailed below:

■ datauser

■ ftpfailed

■ ftplogin

■ msgaux

■ msgdatatype

■ msgdest

■ msgdisc

■ poc

Datause r

The datauser table tracks authorized users of the IDC Message and Subscription

Subsystems. Each user is identified by a (unique) username and domain, which

must match all email headers. The priority attribute specifies the class of user, and

servicetime is the last time a request from the user was processed. Priority and

servicetime are considered when selecting the order in which requests will be pro-

cessed. The status can either be active or inactive. Table 4 shows the datauser table.

Primary and foreign keys are identified in Figure 6.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
Ftp fa i l ed

The ftpfailed table contains the basic information required to track failures of trans-

ferring messages by FTP. Numfailedattempt is the number of times the FTP

attempt failed, and the time of the last failure is given by lastfailedtime. Table 5

shows the ftpfailed table. Primary and foreign keys are identified in Figure 6.

TABLE 4: DATAUSER

Column Storage Type Description

dataid number(8) identifier for the dataready table, set on the insertion

userid number(8) identifier for the user identifier

pocid number(8) point of contact identifier

username varchar2(24) user name from the incoming subscription message

domain varchar2(48) domain name from the incoming subscription
message

status varchar2(24) status of this user

priority number(2) priority that this user has at the IDC

commid number(8) comment identifier

emaillimit number(8) maximum size of message (in bytes) that will be
delivered via email

servicetime float(53) last time a request from that user was serviced

lddate date load date

TABLE 5: FTPFAILED

Column Storage Type Description

msgid number(8) identifier for the ftpfailed table

ftp_address varchar2(64) FTP address

numfailedattempt number(4) number of failed attempts
39

Detai led
Design

▼

I D C D O C U M E N T A T I O N

40

S o f t w a r e
Ftp log in

The ftplogin table contains login information for sites that do not support anony-

mous FTP. Table 6 shows the ftplogin table. Primary and foreign keys are identified

in Figure 6.

Msgaux

The msgaux table contains the basic information required to track an unsuccessfully

processed request message. The msgid and msgrow attributes identify the location

in the message where the request failed. State_count records the number of times

a request failed, which can be greater than two in the case of a hardware failure.

Table 7 shows the msgaux table. Primary and foreign keys are identified in Figure 6.

lastfailedtime float(53) time of most recent attempt

status varchar2(8) status of FTP attempt (retry or failed)

lddate date load date

TABLE 6: FTPLOGIN

Column Storage Type Description

ftp_address varchar2(64) FTP address for auxiliary data

username varchar2(16) user name for FTP access

password varchar2(16) user password for FTP access

lddate date load date

TABLE 5: FTPFAILED (CONTINUED)

Column Storage Type Description
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
Msgdata type

The msgdatatype table contains the basic information required to support data

tracking of each data section in a message for both incoming and outgoing data

messages. This table provides more details concerning each data section within a

message, which is useful for compiling statistics. Table 8 shows the msgdatatype

table. Primary and foreign keys are identified in Figure 6.

TABLE 7: MSGAUX

Column Storage Type Description

msgid number(8) message identifier

msgrow number(4) line number in message

state_count number(4) number of failures

command varchar2(24) AutoDRM command that could not be processed

sub_status varchar2(24) cause of failure

lddate date load date

TABLE 8: MSGDATATYPE

Column Storage Type Description

msgid number(8) message identifier

msgdtype varchar2(16) data type of the data section within the message

msgdformat varchar2(16) general format of data that follows

status varchar2(32) status of the data section

foff number(8) file offset to beginning of data section

msize number(8) size of data section

lddate date load date
41

Detai led
Design

▼

I D C D O C U M E N T A T I O N

42

S o f t w a r e
Msgdes t

The msgdest table contains the basic information required to deliver an outgoing

message. The transmeth attribute specifies if the message will be delivered by

email or by FTP. The emailto specifies the address to which the data message or

FTP_LOG message will be mailed. Table 9 shows the msgdest table. Primary and

foreign keys are identified in Figure 6.

Msgd i s c

The msgdisc table contains the basic information required to specify files used for

storing messages processed by the Message Subsystem. The status attribute

records the status of each message.

Intid and intidtype can be used to link a msgdisc record with a record from another

table. Currently, if intidtype is reqid, the intid will represent the request identifier

of an entry in the request table. If intidtype is msgid, the intid will represent the

msgid of an entry in the msgdisc table. Table 10 shows the msgdisc table. Primary

and foreign keys are identified in Figure 6.

TABLE 9: MSGDEST

Column Storage Type Description

msgdid number(8) message delivery identifier

msgid number(8) message identifier of the response message created
by AutoDRM

transmeth varchar2(16) method by which the response is to be delivered to
the requester

emailto varchar2(64) email address to which the message has been sent

status varchar2(32) current status of the response message

stime float(53) time at which message was sent

itime float(53) time at which table entry was made

lddate date load date
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Detai led
Design

M a y 1 9 9 8

S o f t w a r e
TABLE 10: MSGDISC

Column Storage Type Description

msgid number(8) the IDC unique identifier assigned to a message

msgver varchar2(8) identifies the Message Subsystem version number

extmsgid varchar2(20) the message identification string provided by the
sender

intid number(8) either the locally generated msgid of an earlier msg-
disc entry that evoked the creation of this msgdisc
entry or the reqid from the request table of an inter-
nally generated request

intidtype varchar2(16) specifies the intid type

msgtype varchar2(16) specifies the message type

subtype varchar2(2) specifies the message subtype

msgsrc varchar2(16) the message source code

itime float(53) initial time message was received

idate number(8) initial date message was received

imethod varchar2(8) input method (email or FTP)

isrc varchar2(64) initial source of message

msize number(8) message size in bytes

status varchar2(32) status of message

subject varchar2(64) subject header from email message

dir varchar2(64) directory to find file

dfile varchar2(32) name of data file

foff number(8) byte offset of data segment within file

mfoff number(8) offset in bytes to beginning of message

commid number(8) comment identifier

lddate date load date
43

Detai led
Design

▼

I D C D O C U M E N T A T I O N

44

S o f t w a r e
Poc

The poc (point of contact) table tracks a single point of contact for a particular site

or agency. This table is only used when other attempts to contact an individual

specified in the datauser table have failed. The status attribute can either be active

or inactive (in the event that a point of contact is superseded). Table 11 shows the

poc table. Primary and foreign keys are identified in Figure 6.

TABLE 11: POC

Column Storage Type Description

pocid number(8) message identifier

name varchar2(20) point of contact’s name

email varchar2(20) point of contact’s email address

address varchar2(50) point of contact’s mailing address

telephone number(8) point of contact’s telephone number

fax number(8) point of contact’s fax number

affiliation varchar2(16) NDC or agency for point of contact

status number(2) point of contact’s status

lddate date load date
M a y 1 9 9 8

M a y 1 9 9 8

I D C D O C U M E N T A T I O N

S o f t w a r e
Requ i rements

This chapter describes the requirements of the Message Subsystem and includes

the following topics:

■ General Requirements

■ Functional Requirements

■ System Requirements

■ Requirements Traceability
45

Requirements ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

46
Requ i rements

INTRODUCT ION

The requirements of the Message Subsystem can be categorized as general, func-

tional, or system requirements. General requirements are nonfunctional aspects of

the Message Subsystem. These requirements express goals, design objectives, and

similar constraints that are qualitative properties of the system. The degree to

which these requirements are actually met can only be judged qualitatively. Func-

tional requirements describe what the Message Subsystem is to do and how it is to

do it. System requirements pertain to general constraints, such as compatibility

with other IDC subsystems, use of recognized standards for formats and proto-

cols, and incorporation of standard subprogram libraries.

GENERAL REQUIREMENTS

The Message Subsystem will meet the following general requirements:

1. The system will receive and parse unsolicited data contributed from autho-

rized CTBTO sites. Unsolicited data is defined to be supplemental seismic

data (NDC bulletins) and radionuclide data.

2. The system will receive and parse timeseries data solicited by the Retrieve
Subsystem. The Retrieve Subsystem is defined to be the process that
determines the data needs at the IDC and inserts requests for specific
channels and intervals into a database table.

3. The system will receive and process request messages.

4. The system will receive and forward subscription messages.

5. The system will receive and process messages pertaining to the Continuous
Data Subsystem.

6. The system will be extendable to facilitate parsing of new data types.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Requirements

M a y 1 9 9 8

S o f t w a r e
7. The system will be extendable to facilitate processing of requests for new
data types.

FUNCT IONAL REQUIREMENTS

The requirements described in this section are categorized by function.

User Iden t i f i ca t ion

The Message Subsystem is required to identify authorized users and to store user

profiles and contact information as follows:

8. A user will be identified by a digital signature in the message following the
MIME Object Security Services (MOSS) format (RFC-1848) [MOS95]. In
cases where a message is not signed, the user will be identified by the email
address in the message. Details of digital signature requirements are
discussed in [Moo97].

9. The system will associate additional point-of-contact information with each
user.

10. Each State Party may designate one person as a privileged user. The system
will process requests from privileged users before processing other requests.
The system will maintain a queue with a single slot for each privileged user.
The earliest request by the user will be used to fill the slot in the queue. The
queue of unprivileged users will be processed in a similar way.

11. The system will identify and exclude unauthorized users.

Message T rack ing

The Message Subsystem is required to record the status of each message and link

requests with data messages as follows:

12. All messages sent into the message system will be stored locally, and a
record pointing to that file will be recorded in the database. Each record will
contain a field, which specifies the message and its acceptance or the cause
of the failure if the message was rejected.
47

Requirements ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

48
13. Data from incoming data messages will be parsed and entered into the
system after the message has been authenticated. If incoming data are not
digitally signed, a lookup table will map addresses and data sources.

14. All messages will be archived for an indefinite period of time.

15. The system will be able to track any request message (incoming or
outgoing) to the corresponding response data message.

16. The system will be able to track incoming data messages to the tables in
which the parsed data are stored.

17. The system will generate statistics on the number, timeliness, and volume of
messages by time, source, and content.

18. The system will reconcile the status of outstanding data requests by
comparing outstanding requests with data that it has received.

19. Each message will be referenced by a unique identification number
generated locally.

User In te r face

The Message Subsystem is required to provide the following interfaces to users for

submitting requests, receiving responses, and monitoring the system as follows:

20. The system will provide legacy support for GSE 2.0 and RMS 1.0 formats.
(The ASSOCIATED command of GSE 2.0 is not supported, however.)

21. Users will be able to submit requests through email.

22. Users will be able to submit requests through a Web interface.

23. Users may specify a destination/delivery method with each request.

24. Every incoming request and non-data message will receive a response. No
incoming data message will receive a response, unless an error is
encountered or a return receipt is requested.

25. The user will be able to submit any type of message into the system and
request a return receipt be mailed back to verify that the message was
successfully received.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Requirements

M a y 1 9 9 8

S o f t w a r e
26. The user will have the ability to request the status of submitted requests. If
the IDC reports that a response was emailed, the user may request that the
message be resent.

27. The system will provide a mechanism that alerts authorized users of
important system changes that will impact performance of the message
handling system.

Opera t ion and Logg ing

The Message Subsystem is required to operate and log its progress as follows:

28. The system will support multiple processing queues. At the highest level,
request messages and data messages will have separate queues. Each queue
may be further decomposed based on the age and data types contained in
the message (see requirement 10).

29. System operators will be able to dynamically configure the processing
queues described in requirement 28 without halting processing.

30. The system will log relevant information about processed messages
including query data, recipient, time/date, and size.

31. The system will log all configuration/maintenance actions.

32. The system will rely on Internet-level security precautions to ensure the
privacy of the log, all request messages, and corresponding responses.

33. Data made available by FTP will be stored in read-only directories on a per-
user basis and will be removed after a fixed period of time after the user has
been notified by email.

34. Logs will be kept for an operator-definable period of time.

35. The system will allow authorized individuals to monitor and control it in real
time.

36. All components of the system will function properly even if multiple copies
of that component are running at a given time.
49

Requirements ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

50
Message D i s t r ibu t ion

The Message Subsystem is required to deliver messages as follows:

37. Message data will be delivered through UNIX mail (for example, sendmail)
to the email address associated with the request.

38. Message data may be delivered via FTP if the dataset to be returned is
deemed too large to be sent by email, or if the user identifies FTP as the
preferred delivery method. Local drop directories and FTP push will be
supported as FTP delivery options.

39. The system will support the ability to automatically retrieve data using FTP
upon receipt of an FTP_LOG message.

40. The system will recover and distribute products interrupted by a failure of
hardware or software at the IDC.

41. The system will support the inclusion of customizable, product-dependent
headers. At a minimum, headers will display the time and date when the
product was prepared for delivery.

42. If a request returns no data, a LOG message indicating that no data exists
will be sent.

43. The system will be capable of processing the following message types:
request, subscription, data, and problem.

44. The system will distribute the following types of data messages and be
capable of handling additional data types in the future: STATION,
COMM_STATUS, the following time series products: WAVEFORM, CHANNEL,
INSTRUMENT, OUTAGE, RESPONSE, ARRIVAL, ORIGIN, EVENT, BULLETIN,
COMMENT, STA_STATUS, CHAN_STATUS, AUTH_STATUS, and the following
Radionuclide products: SAMPLEPHD, BLANKPHD, DETBKPHD, CALIBPHD,
QCPHD, MET, DOSE, FLOW, ARMR, FPEB, RSR, and ALERT.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Requirements

M a y 1 9 9 8

S o f t w a r e
SYSTEM REQUIREMENTS

The Message Subsystem will meet the following system requirements:

45. The system will use the IDC ORACLE database for all permanent data
requiring transaction management.

46. The system will use command line arguments to pass run-time parameters
to the application software. These arguments will be provided in par files,
and standard IDC software will be used for reading and parsing these files.

47. The system will provide legacy support for GSE 2.0 and RMS 1.0 formats.

REQUIREMENTS TRACEABIL ITY

The following tables trace the requirements of the Message Subsystem to compo-

nents and describe how the requirements are fulfilled.

TABLE 12: TRACEABILITY OF GENERAL REQUIREMENTS

Requirement How Fulfilled

1 The system will receive and parse
unsolicited data contributed from
authorized CTBTO sites. Unsolic-
ited data is defined to be supple-
mental seismic data (NDC
bulletins) and radionuclide data.

Data types for supplemental seismic
data and radionuclide data can be
parsed by ParseData.

2 The system will receive and parse
timeseries data solicited by the
Retrieve Subsystem. The Retrieve
Subsystem is defined to be the pro-
cess that determines the data
needs at the IDC and inserts
requests for specific channels and
intervals into a database table.

The WAVEFORM data type can be
parsed by ParseData.

3 The system will receive and process
request messages.

Request messages are routed to and
processed by AutoDRM.

4 The system will receive and for-
ward subscription messages.

Subscription messages are routed to
the Subscription Subsystem.
51

Requirements ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

52
5 The system will receive and process
messages pertaining to the Contin-
uous Data Subsystem.

Requests for data to be retransmitted
by the Continuous Data Subsystem
are processed by AutoDRM.

6 The system will be extendable to
facilitate parsing of new data
types.

This requirement is not satisfied by
the current release.

7 The system will be extendable to
facilitate processing of requests for
new data types.

This requirement is not satisfied by
the current release.

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER IDENTIFICATION

Requirement How Fulfilled

8 A user will be identified by a digital
signature in the message following
the MIME Object Security Services
(MOSS) format (RFC-1848)
[MOS95]. In cases where a message
is not signed, the user will be identi-
fied by the email address in the mes-
sage. Details of digital signature
requirements are discussed in
[Moo97].

Message authentication will be per-
formed by MessageReceive.

9 The system will associate additional
point-of-contact information with
each user.

Point-of-contact information is stored
in the poc table.

TABLE 12: TRACEABILITY OF GENERAL REQUIREMENTS (CONTINUED)

Requirement How Fulfilled
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Requirements

M a y 1 9 9 8

S o f t w a r e
10 Each State Party may designate one
person as a privileged user. The sys-
tem will process requests from privi-
leged users before processing other
requests. The system will maintain a
queue with a single slot for each priv-
ileged user. The earliest request by
the user will be used to fill the slot in
the queue. The queue of unprivileged
users will be processed in a similar
way.

User privileges and the time of the
previous response are stored in the
datauser table and are considered by
MessageGet when routing messages
to the processing queues.

11 The system will identify and exclude
unauthorized users.

MessageReceive will have the ability
to identify and exclude unauthorized
users.

TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE TRACKING

Requirement How Fulfilled

12 All messages sent into the message
system will be stored locally, and a
record pointing to that file will be
recorded in the database. Each record
will contain a field, which specifies
the message and its acceptance or the
cause of the failure if the message
was rejected.

A reference for each message is made
in the msgdisc table. The status of
each message can be derived from
the status attribute in the msgdisc
table and the status attribute of the
corresponding msgdatatype records.

13 Data from incoming data messages
will be parsed and entered into the
system after the message has been
authenticated. If incoming data are
not digitally signed, a lookup table
will map addresses and data sources.

This requirement is not satisfied by
the current release.

14 All messages will be archived for an
indefinite period of time.

Message archiving will be handled by
the Archive Subsystem.

TABLE 13: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER IDENTIFICATION (CONTINUED)

Requirement How Fulfilled
53

Requirements ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

54
15 The system will be able to track any
request message (incoming or outgo-
ing) to the corresponding response
data message.

The msgid of a request in the msg-
disc table is recorded as the initid for
the corresponding response in the
msgdisc table.

16 The system will be able to track
incoming data messages to the tables
in which the parsed data are stored.

Incoming data messages are linked to
the data tables by the xtag table,
except for the waveforms, which are
linked by the wtag table.

17 The system will generate statistics on
the number, timeliness, and volume
of messages by time, source, and
content.

Values for compiling these statistics
can be found in the msgdisc and
msgdatatype tables.

18 The system will reconcile the status of
outstanding data requests by com-
paring outstanding requests with data
that it has received.

WaveAlert reconciles the status of
outstanding data requests by com-
paring outstanding requests with data
it has received.

19 Each message will be referenced by a
unique identification number gener-
ated locally.

Each message is uniquely identified
by the msgid in the msgdisc table.

TABLE 15: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER INTERFACE

Requirement How Fulfilled

20 The system will provide legacy sup-
port for GSE 2.0 and RMS 1.0 for-
mats. (The ASSOCIATED command of
GSE 2.0 is not supported, however.)

Data messages in either format can
be parsed by ParseData. Requests for
data in either format will be sup-
ported by AutoDRM.

21 Users will be able to submit requests
through email.

Requests may be sent to the Message
Subsystem mail alias where they will
be accepted by MessageReceive.

22 Users will be able to submit requests
through a Web interface.

This requirement is not satisfied by
the current release.

TABLE 14: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE TRACKING (CONTINUED)

Requirement How Fulfilled
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Requirements

M a y 1 9 9 8

S o f t w a r e
23 Users may specify a destination/deliv-
ery method with each request.

Each request message may contain an
email or FTP line that specifies the
destination and delivery method.

24 Every incoming request and non-data
message will receive a response. No
incoming data message will receive a
response, unless an error is encoun-
tered or a return receipt is requested.

This requirement is not satisfied by
the current release.

25 The user will be able to submit any
type of message into the system and
request a return receipt be mailed
back to verify that the message was
successfully received.

This requirement is not satisfied by
the current release.

26 The user will have the ability to
request the status of submitted
requests. If the IDC reports that a
response was emailed, the user may
request that the message be resent.

This requirement is not satisfied by
the current release.

27 The system will provide a mechanism
that alerts authorized users of impor-
tant system changes that will impact
performance of the message handling
system.

The IDC will send a message of data
type COMMENT to authorized users to
inform them of any important system
changes.

TABLE 15: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
USER INTERFACE (CONTINUED)

Requirement How Fulfilled
55

Requirements ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

56
TABLE 16: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
OPERATION AND LOGGING

Requirement How Fulfilled

28 The system will support multiple pro-
cessing queues. At the highest level,
request messages and data messages
will have separate queues. Each
queue may be further decomposed
based on the age and data types con-
tained in the message (see require-
ment 10).

Separate processing queues are sup-
ported by MessageGet.

29 System operators will be able to
dynamically configure the processing
queues described in requirement 28
without halting processing.

This requirement is not satisfied by
the current release.

30 The system will log relevant informa-
tion about processed messages
including query data, recipient, time/
date, and size.

Relevant information about messages
is stored in the msgdisc and msg-
datatype tables.

31 The system will log all configuration/
maintenance actions.

This requirement is not satisfied by
the current release.

32 The system will rely on Internet-level
security precautions to ensure the pri-
vacy of the log, all request messages,
and corresponding responses.

Access to logs and messages will be
controlled by UNIX file permissions.

33 Data made available by FTP will be
stored in read-only directories on a
per-user basis and will be removed
after a fixed period of time after the
user has been notified by email.

The FTP directories will be configured
so each user will only be able to
access their own data.

34 Logs will be kept for an operator-
definable period of time.

The operator may specify the dura-
tion for which logs will be retained.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Requirements

M a y 1 9 9 8

S o f t w a r e
35 The system will allow authorized indi-
viduals to monitor and control it in
real time.

MessageFlow will allow authorized
individuals to monitor and control the
Message Subsystem.

36 All components of the system will
function properly even if multiple
copies of that component are running
at a given time.

This requirement is not satisfied by
the current release.

TABLE 17: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE DISTRIBUTION

Requirement How Fulfilled

37 Message data will be delivered
through UNIX mail (for example,
sendmail) to the email address associ-
ated with the request.

Data messages are delivered through
UNIX mail by MessageShip to the
address listed on the email or FTP
line.

38 Message data may be delivered via
FTP if the dataset to be returned is
deemed too large to be sent by email,
or if the user identifies FTP as the pre-
ferred delivery method. Local drop
directories and FTP push will be sup-
ported as FTP delivery options.

MessageShip delivers data by FTP if
the message is too large or if the user
specifies the FTP option.

39 The system will support the ability to
automatically retrieve data using FTP
upon receipt of an FTP_LOG message.

MessageFTP can automatically
retrieve data using FTP upon receipt
of an FTP_LOG message.

40 The system will recover and distribute
products interrupted by a failure of
hardware or software at the IDC.

This requirement is not satisfied by
the current release.

41 The system will support the inclusion
of customizable, product-dependent
headers. At a minimum, headers will
display the time and date when the
product was prepared for delivery.

This requirement is not satisfied by
the current release.

TABLE 16: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
OPERATION AND LOGGING (CONTINUED)

Requirement How Fulfilled
57

Requirements ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

58
42 If a request returns no data, a LOG
message indicating that no data exists
will be sent.

AutoDRM will respond with a LOG
message if no data exists for a
request.

43 The system will be capable of pro-
cessing the following message types:
request, subscription, data, and prob-
lem.

REQUEST messages are handled by
AutoDRM. Subscription messages are
handled by the Subscription Sub-
system. DATA messages are handled
by ParseData. PROBLEM messages
are currently unsupported.

44 The system will distribute the follow-
ing types of data messages and be
capable of handling additional data
types in the future: STATION,
COMM_STATUS, the following time
series products: WAVEFORM, CHAN-
NEL, INSTRUMENT, OUTAGE,
RESPONSE, ARRIVAL, ORIGIN,
EVENT, BULLETIN, COMMENT,
STA_STATUS, CHAN_STATUS,
AUTH_STATUS, and the following
Radionuclide products: SAMPLEPHD,
BLANKPHD, DETBKPHD, CALIBPHD,
QCPHD, MET, DOSE, FLOW, ARMR, FPEB,
RSR, and ALERT.

AutoDRM currently responds to
requests for the following data types:
STATION, CHANNEL, WAVEFORM,
INSTRUMENT, RESPONSE,
ARRIVAL, ORIGIN, EVENT, and
BULLETIN.

TABLE 17: TRACEABILITY OF FUNCTIONAL REQUIREMENTS:
MESSAGE DISTRIBUTION (CONTINUED)

Requirement How Fulfilled
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

S o f t w a r e

M a y 1 9 9 8
Refe rences

The following sources are referenced in this document or supplement it:

[And94] Anderson, J., Mortel, M., MacRitchie, B., and Turner, H., Generic
Database Interface (GDI) User Manual, Science Applications
International Corporation, SAIC-93/1001, 1994.

[DOD94a] Department of Defense, “Software Design Description,” Military
Standard Software Development and Documentation, MIL-STD-
498, 1994.

[DOD94b] Department of Defense, “Software Requirements Specification,”
Military Standard Software Development and Documentation, MIL-
STD-498, 1994.

[GSE95a] Group of Scientific Experts, GSETT 3 Documentation, Volume One:
Operations, CRP/243, 1995.

[IDC3.4.1] Science Applications International Corporation, Pacific-Sierra
Research Corporation, Formats and Protocols for Messages, SAIC-98/
3004, PSR-98/TN1129, 1998.

[IDC3.4.2] Science Applications International Corporation, Formats and
Protocols for Continuous Data, SAIC-98/3005, 1998.

[IDC5.1.1] Science Applications International Corporation, Pacific-Sierra
Research Corporation, Database Schema (Part 1 and Part 2), SAIC-
98/3009, PSR-98/TN1127, 1998.

[IDC7.4.4] Science Applications International Corporation, Subscription
Subsystem, SAIC-98/3001, 1998.
59

References ▼

I D C D O C U M E N T A T I O N

S o f t w a r e

60
[MOS95] MIME Object Security Services (MOSS) format (RFC-1848), 1995.

[Moo97] Moore, IMS Authentication Management and Requirements
document,1997.

[WGB97] Working Group B, Operational Manual for the International Data
Centre, Preparatory Commission of the Comprehensive Test-Ban
Treaty Organization, WGB/TL/44, 1997.
M a y 1 9 9 8

M a y 1 9 9 8

I D C D O C U M E N T A T I O N

S o f t w a r e
Glossa ry

A

Annexes

Formal additions to the Comprehensive
Nuclear Test-Ban Treaty.

arrival

A signal that has been associated to an
event. In the first instance, this is
performed automatically by the Global
Association (GA) software. Later in the
processing, many arrivals are confirmed
and improved by visual inspection.

B

bulletin

Chronological listing of event origins
spanning an interval of time. Often, the
specification of each origin, or event, is
accompanied by th e event’s arrivals,
and sometimes with the event’s
waveforms.

C

child process

UNIX process created by the fork
routine. The child process is a snapshot
of the parent at the time it called fork.

CMR

Center for Monitoring Research.

Configuration Control Board

Organizational body that approves and
releases new versions of software.

COTS

Commercial-Off-the-Shelf; terminology
that designates products such as
hardware or software that can be
acquired from existing inventory and
used without modification.

CSC

Computer Software Component.

CSCI

Computer Software Configuration Item.

CSP

Conference of States Parties; the
principal body of the CTBTO consisting
of one representative from each State
Party accompanied by alternate
representatives and advisers. The CSP is
responsible for implementing,
executing, and verifying compliance
with the Treaty.
G1

Glossary ▼

I D C D O C U M E N T A T I O N

G2

S o f t w a r e
CTBT

Comprehensive Nuclear Test-Ban Treaty
(the Treaty).

CTBTO

Comprehensive Nuclear Test-Ban Treaty
Organization; Treaty User group that
consists of the Conference of States
Parties (CSP), the Executive Council,
and the Technical Secretariat.

D

detection

Probable signal that has been
automatically detected by the Detection
and Feature Extraction (DFX) software.

E

email

Electronic mail.

exit status

Value returned at the completion of a
UNIX command.

F

FTP

File Transfer Protocol; a method for
transferring files between computers.

G

GB

Gigabyte.

GDI

Generic Database Interface.

GSE

Group of Scientific Experts.

GSETT-3

Group of Scientific Experts Third
Technical Test.

H

HTML

Hypertext Markup Language;
formatting language of the Web.

hydroacoustic

Pertaining to sound in the ocean.

I

IDC

International Data Centre.

IDC Operators

Technical staff that install, operate, and
maintain the IDC systems and provide
additional technical services to the
individual States Parties.

IMS

International Monitoring System.

IMS Operators

Technical staff that operate and monitor
the IMS facilities.
M a y 1 9 9 8

I D C D O C U M E N T A T I O N

▼ Glossary

M a y 1 9 9 8

S o f t w a r e
infrasonic

Pertaining to low-frequency (sub-
audible) sound in the atmosphere.

Internet

World-wide network of computers
linked by means of the IP protocol.

M

MB

Megabyte.

monitoring system

See IMS and RMS.

MOSS

MIME Object Security Services.

N

NDC

National Data Center.

O

online

Logged onto the network or having
unspecified access to the Internet.

Operations Manuals

Treaty-specified, formal documents that
describe how to provide data, receive
IDC products, access the IDC database,
and evaluate the performance of the
IDC.

origin

Place and time of a seismic,
hydroacoustic, or infrasonic event.

OSI

On-site Inspection.

P

parameter (par) file

ASCII file containing values for
parameters of a program. Par files are
used to replace command line
arguments. The files is formatted as a
list of [token = value] strings.

PIDC

Prototype International Data Centre.

PIDC System Developers

Contractors and other organizations
who are developing and testing
components of the PIDC technology.

Preparatory Commission

Preparatory Commission for the
CTBTO; new international body funded
by States Parties to prepare for
implementation of the Treaty. This body
will become the CTBTO after entry-
into-force of the Treaty.
G3

Glossary ▼

I D C D O C U M E N T A T I O N

G4

S o f t w a r e
R

REB

Reviewed Event Bulletin; the bulletin
formed of all events that have passed
analyst inspection and quality assurance
review. The REB runs 48 hours behind
real time. The CTBTO is changing the
name of this list to SEL3.

RMS

Radionuclide Monitoring System; the
part of the IMS that monitors the
atmosphere for radionuclides.

S

SEL1

Standard Event List 1; the bulletin
created by total automatic analysis of
continuous timeseries data. Typically,
the list runs one hour behind real time.

SEL2

Standard Event List 2; the bulletin
created by totally automatic analysis of
both continuous data and segments of
data specifically down-loaded from
stations of the auxiliary seismic
network. Typically, the list runs five
hours behind real time.

SEL3

Standard Event List 3; the future name
for the Reviewed Event Bulletin.

SMR

Software Modification Request.

SMTP

Simple Mail Transfer Protocol.

States Parties

Treaty user group who will operate their
own or cooperative facilities, which may
be NDCs.

T

taxonomy

Systematic arrangement; classification.

Treaty

Comprehensive Nuclear Test-Ban Treaty
(CTBT).

Treaty Users

CTBTO and States Parties.

U

UN/CD

United Nations Conference on
Disarmament.

W

Web

World Wide Web; a graphics-intensive
environment running on top of the
Internet.

workstation

High-end, powerful desktop computer
preferred for graphics and usually
networked.
M a y 1 9 9 8

	Cover Page
	Notice Page
	Contents
	Figures
	Tables
	About this Document
	Purpose
	Scope
	Audience
	Related Information
	Using This Document
	Conventions

	Overview
	Introduction
	Functionality
	Identification
	Status of Development
	Background and History
	Operating Environment
	Hardware
	Commercial-Off-the-Shelf Software

	Architectural Design
	Conceptual Design
	Design Decisions
	Programming Language
	Global Libraries
	Database
	Interprocess Communication (IPC)
	File System
	UNIX Mail
	FTP
	Web
	Design Model
	Database Schema Overview

	Functional Description
	Interface Design
	Interface with Other IDC Systems
	Interface with External Users
	Interface with Operators

	Detailed Design
	Data Flow Model
	Software Units
	MessageStore
	MessageReceive
	MessageGet
	ParseData
	AutoDRM
	MessageFTP
	MessageAlert
	MessageSend
	MessageShip
	MessageFlow

	Database Description
	Database Design
	Database Schema

	Requirements
	Introduction
	General Requirements
	Functional Requirements
	User Identification
	Message Tracking
	User Interface
	Operation and Logging
	Message Distribution

	System Requirements
	Requirements Traceability

	References
	Glossary
	
	Print...

